MN838896

1. Type

CMOS LSI source driver for color TFT LCD panels

2. Overview

This LSI converts the digital display data from a personal computer, portable device, or other source into analog signals for driving a color TFT LCD panel.

3. Features

(1) Power saving driver
(2) Built in DA converter accepting 6-bit digital input (for 262,144 colors)
(3) Choice of $408,396,372$, and 360 drive outputs
(4) Input data bus at pixel level
(5) Choice of output data format: gray scale or binary
(6) Thirteen reference voltage inputs for producing 10 segment gamma adjustment graph.
(7) Set output voltage inflection points at data values $00,01,07,0 \mathrm{~F}, 17,1 \mathrm{~F}$, $27,2 \mathrm{~F}, 37,3 \mathrm{E}$, and 3 F .
(8) Prechargeless drive circuits
(9) Support for serial cascade connections
(10) Automatic internal clock stop after fixed number of data inputs
(11) Choice of shift register shift direction: right or left
(12) Gray scale data inversion available every clock cycle
(13) Low voltage operation: 1.8 V (typ.) for logic circuits; 3.5 V (typ.) for analog circuits
(14) Maximum operating clock frequency: 10 MHz
(15) Power save function for cutting off current to outputs, fixing them at high impedance
(16) Switching of gamma adjustment resistors for binary output, high impedance output, etc.

Figure 4.1 Block Diagram

5. Pin Descriptions

Table 5.1 Pin Descriptions

Pin Name	$\begin{array}{c\|} \hline 1 / 0 \\ \text { Direction } \\ \hline \end{array}$	Pin Function	Description	
RSW	Input	Gamma adjustment resistor select control	This controls the use of gamma adjustment resistors. Note that switching need not be synchronized with the FY signal. Low level: Enable (gray scale output) High level: Disable (binary output, , high-impedance output, etc.) Enable the use of these resistors at least five H clock cycles before switching to gray scale output.	
PS	Input	Power save function select pin	High level input at a rising edge in the FY signal cuts off current to outputs, fixing them at high-impedance. High level: High-impedance outputs. No current to operational amplifier or other components. Low level: Normal operation	
$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	Input	TEST input pins	Normally fix these inputs both at Low level. Low level: Normal operation High level: Test mode	
			TEST1 ${ }^{\text {TEST2 }}$	Operating Mode
			Low Low	Normal operation
			Low High	Switch gamma adjustment resistors OFF when the PS pin input is at High level
			High X	Boost image output drive power
VREF0 to 10, R, L	Input	Gamma adjustment potential input pin	This input is the gamma adjustment potential input pin for the DA converter.	
AV ${ }_{\text {DD }}$	Input	Analog power supply	This is the power supply for the DA converter's analog circuits.	
$\mathrm{AV}_{\text {SS }}$	Input	Analog ground		
AV ${ }_{\text {DD1 }}$	Input	Analog power supply	This is the power supply for the output analog circuits.	
AVSS1	Input	Analog ground Ground for analog circuits and binary drive signals	This is the ground for the output analog circuits and the binary drive circuits.	
$\mathrm{AV}_{\text {DD2 }}$	Input	Analog power supply	This is the power supply for the circuits protecting the output circuits.	
AVSS2	Input	Analog ground		
BV ${ }_{\text {DD }}$	Input	Binary drive power supply	This is the power supply for the binary drive output signals.	
DV ${ }_{\text {DD }}$	Input	Digital power supply	This is the power supply for the digital circuits.	
DVSS	Input	Digital ground		
COM1 to 4	-	Through connections	These provide straight connections to the corresponding output pins. They are not connected to other circuits.	
DUMMY	-	Dummy pins	These are dummies. They are not connected to other circuits.	

6. Description of Operation

6.1 Functional Description

The MODE3 pin offers a choice of 6-bit gray scale data or 1-bit binary data. The MODE1 and MODE2 pins specify the number of outputs.
The following Table summarizes the effects of MODE3 and RL input levels on I/O pins when both MODE1 and MODE2 are at High level (408 outputs).

Table 6.1 MODE3 and RL Settings (MODE1 = MODE2 = High Level $)$

The following unused pins have high-impedance output.
396 outputs: YX67-YX70, YY67-YY70, and YZ67-YZ70 372 outputs: YX63-YX74, YY63 - YY74, and YZ63 - YZ74
360 outputs: YX61-YX76, YY61-YY76, and YZ61-YZ76

6.2 Relationships Between Data Input and Output Pins

(1) Gray scale data input (MODE3 = Low)

The following summarizes the relationships between data input and output pins for gray scale data input (MODE3 = Low).
So, binary data input is naturally ignored during gray scale data input.
MODE3 = Low, RL = High
408 outputs

$\underline{\text { MODE3 }}=$ Low, $\mathrm{RL}=$ Low

$\mathrm{n}=1,2, \cdot \cdot, 136$
(2) Binary input $($ MODE3 $=$ High $)$

Binary input uses only the pins DX5, DY5, and DZ5. The relationships between data input and output pins are otherwise the same.
So, binary data input is naturally ignored during gray scale data input.

6.3 Power Save Function

High level PS pin input at a rising edge in the FY signal cuts off current to outputs, fixing them at high-impedance.

Figure 6.3 High-Impedance Output Interval

6.4 Blanking Interval

The following timing chart summarizes the relationships between the load data (LD) and start pulse (STHR and STHL) inputs and the blanking interval.

Figure 6.4 Blanking Interval

6.5 Data Inverse Function

Driving the INV input at High level inverts all bits in the data input.

Figure 6.5 Data Inverse Function

6.6 Switching Input Formats

The following timing chart summarizes the relationships between changes in input format and the subsequent changes in output.

Figure 6.6.1 Switching Formats (1/2)

The LSI drives the output pins at high-impedance for one FY cycle when changing output formats.

Figure 6.6.2 Switching Formats (2/2)

6.7 Cascade Connection

(1) RL = High

Driver A starts latching data one FY cycle after receiving a start pulse (STHR).
It asserts the carry signal (STHL) one FY cycle before latching the last data and then stopping.

```
MODE1 = MODE2 = High (408 outputs): 135 FY cycles
MODE1 = High, MODE2 = Low (396 outputs): }131\mathrm{ FY cycles
MODE1 = Low, MODE2 = High (372 outputs): 123 FY cycles
MODE1 = MODE2 = High (360 outputs): 119 FY cycles
```

Cascade Connection

Driver B starts latching data one FY cycle after receiving the carry signal (STHL) from driver A.

Note: Although the carry signal (STHL) pulses are two FY cycles long, only the first cycle counts.
The next driver treats the two cycles as a single pulse.

Driver A
Driver B
Driver C
Figure 6.7 Serial Cascade Connection
(2) RL = Low

The start pulse input is from STHL; the carry output, from STHR. Apart from that, operation is the same as for $\mathrm{RL}=$ High.

6.8 Relationship between Input Data and Output Voltage

6.8.1 Built-In Gamma Adjustment Resistors

The output voltage depends on the input data and thirteen gamma adjustment voltages
$\left(V_{\text {REF }}, x=H, 0\right.$ to $\left.10, L\right)$. See graph and conversion table on the next two pages.

Figure 6.8.1
Built-In Gamma Adjustment Resistors

The LSI contains ten divider resistances and two switches between $\mathrm{V}_{\text {REG H }}$ and $\mathrm{V}_{\text {REG L }}$. Table 6.8 summarizes the formulas for calculating the output voltages from the voltages applied to pins $\mathrm{V}_{\text {REF } \mathrm{x}}$, $\mathrm{x}=0$ to 10 . Applying voltages only to $\mathrm{V}_{\text {REG H }}$ and $\mathrm{V}_{\text {REG L }}$ produces the default graph shown in Figure 6.8.2.
Note that we recommend the use of an operational amplifier or similar means to guarantee low-impedance input to the $\mathrm{V}_{\text {REG }}$ pins.
The RSW pin input controls the two switches between $\mathrm{V}_{\text {REG H }}$ and $\mathrm{V}_{\text {REG L }}$, allowing the user application system to conserve power by cutting the current flowing between the two pins.
(Note 1)
The adjustment voltages ($\mathrm{V}_{\text {REF } x}, \mathrm{x}=\mathrm{H}, 0$ to $10, \mathrm{~L}$) must satisfy one of the following two relationships.

$$
\begin{aligned}
A V_{\text {DD }}>V_{\text {REFR }} & \geq V_{\text {REF0 }} \geq V_{\text {REF1 }} \geq \cdots \\
& \cdots \cdots \geq V_{\text {REF10 }} \geq V_{\text {REFL }}>A V_{S S} \\
A V_{\text {DD }}>V_{\text {REFL }} \geq & V_{\text {REF10 }} \geq V_{\text {REF9 } 9} \geq \cdots \\
& \cdots \cdots \geq V_{\text {REF0 }} \geq V_{\text {REFR }}>A V_{\text {SS }}
\end{aligned}
$$

Do not change these voltages while the chip is in operation.

The following are the values for the internal resistances R0 to R9.

Gamma Adjustment Resistances

R0	0.00
R1	1.02
R2	0.83
R3	0.66
R4	0.51
R5	0.51
R6	0.64
R7	0.80
R8	1.00
R9	0.14

6.8.2 Relationship between Input Data and Output Voltage

The following Figure gives the gamma adjustment curve for INV = Low.

Figure 6.8.2 Relationship between Input Data and Output Voltage (AVdD> VRefr \geq VRef $0 \geq$ Vrefi $\geq \ldots . . \geq$ Vrefi $0 \geq$ Vrefl $>$ AVss)

6.8.3 Relationship between Reference Voltages and Output Voltages

The following Table gives the formulas for converting input data for $\operatorname{INV}=$ Low.

Table 6.8 Relationship between Reference Voltages and Output Voltages
(AVdD> Vrefr \geq Vrefo \geq Vrefi $\geq \ldots$... \geq Vrefio Vrefl $>$ AVss $)$

Input data	Formula for calculating output voltage	Input data	Formula for calculating output voltage
00h	VReF0	20h	VREF6 $+($ Vrefs to VREF6) $\times 7 / 8$
01h	VREF2 $+($ VREF1 1 to VREF2) $\times 6 / 7$	21h	VREF6 $+($ VREF5 to VREF6) $\times 6 / 8$
02h	VREF2 $+\left(\right.$ VreF1 $^{\text {d }}$ to VREF2) $\times 5 / 7$	22h	VREF6 $+($ VreF5 to VREF6) $\times 5 / 8$
03h	VREF2 $+($ Vrefl to VREF2) $\times 4 / 7$	23h	VREF6 $+($ Vrefs to VREF6) $\times 4 / 8$
04h	$\mathrm{V}_{\text {REF2 } 2+\left(V_{\text {REF1 }}\right.}$ to $\left.\mathrm{V}_{\text {REF2 }}\right) \times 3 / 7$	24h	VREF6 $+\left(\right.$ VREF5 $^{\text {to }}$ VREF6) $\times 3 / 8$
05h	VREF2 $+($ VREF1 1 to VREF2) $\times 2 / 7$	25h	VREF6 $+($ VREF5 5 to VREF6) $\times 2 / 8$
06h	VREF2 $+($ VREF1 1 to VREF2) $\times 1 / 7$	26h	VREF6 $+($ VREF5 5 to VREF6) $\times 1 / 8$
07h	VReF2	27h	VReF6
08h	VREF3 + (VREF2 to VREF3) $\times 7 / 8$	28h	VREF7 + (VREF6 to VREF7) $\times 7 / 8$
09h	VREF3 + (VREF2 to VREF3) $\times 6 / 8$	29h	VREF7 + (VREF6 to VREF7) $\times 6 / 8$
0Ah	VREF3 + (VREF2 to VREF3) $\times 5 / 8$	2Ah	VREF7 + (VREF6 to VREF7) $\times 5 / 8$
0Bh	VREF3 $+($ VREF2 2 to VREF3) $\times 4 / 8$	2Bh	VREF7 $+($ VREF6 6 to VREF7 $) \times 4 / 8$
0 Ch	VREF3 + (VREF2 to VREF3) $\times 3 / 8$	2 Ch	VREF7 + (VREF6 to VREF7) $\times 3 / 8$
0Dh	VREF3 $+\left(\right.$ VREF2 $^{\text {to }}$ VREF3 $) \times 2 / 8$	2Dh	VREF7 $+\left(\right.$ VREF6 to $\mathrm{V}_{\text {REF7 }}$) $\times 2 / 8$
0Eh	VREF3 + (VREF2 to VREF3) $\times 1 / 8$	2Eh	VREF7 + (VREF6 to VREF7) $\times 1 / 8$
0Fh	VReF3	2 Fh	VReF7
10h	VREF4 + (VREF3 to VREF4) $\times 7 / 8$	30h	VREF8 + (VREF7 to VreF8) $\times 7 / 8$
11h	VREF4 + (VREF3 to VREF4) $\times 6 / 8$	31h	VREF8 + (VREF7 to Vrefs) $\times 6 / 8$
12h	VREF4 + (VREF3 to VREF4) $\times 5 / 8$	32h	VREF8 + (VREF7 to VREF8) $\times 5 / 8$
13h	VREF4 $+($ VREF3 3 to VREF4) $\times 4 / 8$	33h	VREF8 $+($ VREF7 7 to VREF8) $\times 4 / 8$
14h	VREF4 + (VREF3 to VREF4) $\times 3 / 8$	34h	VREF8 + (VREF7 to VREF8) $\times 3 / 8$
15h	VREF4 + (VREF3 to VREF4) $\times 2 / 8$	35h	VREF8 + (VREF7 to Vrefs) $\times 2 / 8$
16h	VREF4 + (VREF3 to VREF4) $\times 1 / 8$	36h	VREF8 $+($ VREF7 to VREF8) $\times 1 / 8$
17h	VReF4	37h	VReF8
18h	VREF5 + (VREF4 to VREF5) $\times 7 / 8$	38h	VREF9 + (VREF8 to VREF9) $\times 6 / 7$
19h	VRef5 + (VREF4 to Vrefs) $\times 6 / 8$	39h	VREF9 $+($ Vrefs to Vref9) $\times 5 / 7$
1 Ah	VREF5 + (VREF4 to VREF5) $\times 5 / 8$	3Ah	VREF9 + (VREF8 to VREF9) $\times 4 / 7$
1Bh	VREF5 + (VREF4 to Vrefs) $\times 4 / 8$	3Bh	VREF9 $+($ VREF8 to VREF9) $\times 3 / 7$
1 Ch	VREF5 + (VREF4 to VREF5) $\times 3 / 8$	3 Ch	VREF9 $+\left(\right.$ VreF8 $^{\text {to }}$ VREF9) $\times 2 / 7$
1Dh	VREF5 + (VREF4 to Vrefs) $\times 2 / 8$	3Dh	VREF9 + (VREF8 to VREF9) $\times 1 / 7$
1Eh	VREF5 + (VREF4 to VREF5) $\times 1 / 8$	3Eh	VREF9
1 Fh	VReF5	3Fh	Vrefi0

7. Product Standards

A. Absolute Maximum Ratings

	$\mathrm{AV}_{\mathrm{Ss}}=\mathrm{DV}_{\mathrm{SS}}=0 \mathrm{~V}$			
A 1	Digital power supply voltage	$\mathrm{DV}_{\mathrm{DD}}$	-0.3 to 6.5	V
A 2	Analog power supply voltage	$\mathrm{AV}_{\mathrm{DD}}$	-0.3 to 6.5	V
A 3	Binary drive power supply voltage	$\mathrm{BV}_{\mathrm{DD}}$	-0.3 to $\mathrm{AV}_{\mathrm{DD}}$	V
A 4	Digital input voltage	V_{II}	-0.3 to $\mathrm{DV}_{\mathrm{DD}}+0.3$	V
A 5	Analog input voltage	$\mathrm{V}_{\mathrm{I} 2}$	-0.3 to $\mathrm{AV}_{\mathrm{DD}}+0.3$	V
A6	Digital output voltage	$\mathrm{V}_{\mathrm{O} 1}$	-0.3 to $\mathrm{DV}_{\mathrm{DD}}+0.3$	V
A 7	Analog output voltage	$\mathrm{V}_{\mathrm{O} 2}$	-0.3 to $\mathrm{AV} \mathrm{V}_{\mathrm{DD}}+0.3$	V
A 8	Operating storage temperature	$\mathrm{T}_{\mathrm{opr}}$	-30 to +85	${ }^{\circ} \mathrm{C}$
A 9	Operating ambient temperature	Ta_{a}	-20 to +75	${ }^{\circ} \mathrm{C}$
A 10	Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Note: The above absolute maximum ratings represent limits for avoiding damage to the product. They do not guarantee operation.

- The above standards apply only to our standard package for the product.

B. Operating Conditions

$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C} \quad \mathrm{AV}_{\mathrm{SS}}=\mathrm{DV}_{\mathrm{SS}}=0 \mathrm{~V}$

	Item	Symbol	Conditions	Rating			Unit
				MIN	TYP	MAX	
B1	Digital power supply voltage	DV ${ }_{\text {DD }}$		1.65	1.8	3.6	V
B2	Analog power supply voltage	$A V_{\text {DD }}$		3.0	3.5	5.5	V
B3	Binary drive power supply voltage	$B V_{\text {DD }}$		2.6	3.5	$\mathrm{AV}_{\mathrm{DD}}$	V
B4	Gamma adjustment reference voltages	$\mathrm{V}_{\text {Refr, L, } \text { oto } 10}$		0.1		$\mathrm{AV}_{\mathrm{DD}}-0.1$	V
B5	Operating frequency	f_{FY}				10	MHz
B6	Drive load capacity	Cr_{Y}				50	pF
B7	Digital signal input capacity	$\mathrm{C}_{\text {IN }}$	1 MHz		7	15	pF

Notes

(1) Use only direct connections to power supply pins sharing the same symbol $\left(\mathrm{AV}_{\mathrm{DD}}, \mathrm{DV}_{\mathrm{DD}}\right.$, and $\left.\mathrm{BV}_{\mathrm{DD}}\right)$.
(2) Use only direct connections to ground pins sharing the same symbol $\left(\mathrm{AV}_{\mathrm{SS}}\right.$ and $\left.\mathrm{DV}_{\mathrm{SS}}\right)$.
(3) Apply voltages in the following order: $\mathrm{DV}_{\mathrm{DD}}$ pins, logic input pins, $\mathrm{AV}_{\mathrm{DD}}$ pins, $\mathrm{BV}_{\mathrm{DD}}$ pins, and $\mathrm{V}_{\mathrm{REF} \times}$. Remove them in the reverse order.
(4) Make sure that the following relationship applies at all times.

- The above standards apply only to our standard package for the product.

C. Electrical Characteristics

(1) DC Characteristics $\quad \mathrm{DV}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{BV}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{SS}}=\mathrm{DV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

	Item	Symbol	Conditions	Rating			Unit
				MIN	TYP	MAX	
C1	Analog operation power supply current (1)	$\mathrm{I}_{\text {SS } 1}$	Notes 6 and 7		1.8	4.5	mA
C2	Analog operation power supply current (2)	$\mathrm{I}_{\text {SS2 }}$	The above, without loads Notes 9		0.8		mA
C3	Analog standby power supply current	IsS3	PS $=$ High			5	$\mu \mathrm{A}$
C4	Binary drive operation power supply voltage	ISS4	Notes 6 and 7		1.1	3.0	mA
C5	Binary drive standby power supply current	$\mathrm{I}_{\text {SS5 }}$	Clock signal off			5	$\mu \mathrm{A}$
C6	Digital operation power supply voltage	$\mathrm{I}_{\text {SS6 }}$	Notes 5 and 6		0.1	1.0	mA
C7	Digital standby power supply current	$\mathrm{I}_{\text {SS7 }}$	Clock signal off			5	$\mu \mathrm{A}$

(5) Typical conditions

FY frequency of 10 MHz , raster period of $50 \mu \mathrm{~s}$, data pattern alternating between 00 and 3 F every raster period, fixed $\mathrm{V}_{\text {REF }}$
(6) Maximum conditions

FY frequency of 10 MHz , raster period of $50 \mu \mathrm{~s}$, data pattern alternating between 00 and 3 F every raster period, fixed $V_{\text {REF }}$

(7) The loads on the analog output pins are as shown. Note that the numbers for those load circuits sometimes change.
(8) The following is the formula for calculating the power consumption with the loads described in note 6 above.
$\mathrm{I}_{\mathrm{SS} 1} \times \mathrm{AV}_{\mathrm{DD}}+\mathrm{I}_{\mathrm{SS} 6} \times \mathrm{DV}_{\mathrm{DD}} \quad$ (consumption by gamma adjustment resistors not included)
(9) This value is for reference only. It is not guaranteed.

The above standards apply only to our standard package for the product.

- The above standards apply only to our standard package for the product.

$\mathrm{DV}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{BV}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{SS}}=\mathrm{DV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}^{\circ}=25^{\circ} \mathrm{C}$						
Item	Unit					
		Conditions	Rating			MIN
			TYP	MAX		

1) Input pins (RL, LD, DX0 to 5, DY0 to 5, DZ0 to 5, FY, INV, PS, MODE1 to 3, RSW)

C 6	High level input	$\mathrm{V}_{\mathrm{IH} 1}$		$0.8 \times \mathrm{DV}_{\mathrm{DD}}$		$\mathrm{DV}_{\mathrm{DD}}$	V
C 7	Low level input	$\mathrm{V}_{\mathrm{IL} 1}$		0		$0.2 \times \mathrm{DV}_{\mathrm{DD}}$	V
C 8	Input leak current	$\mathrm{I}_{\mathrm{LI} 1}$		-2		2	$\mu \mathrm{~A}$

2) I/O pins (STHR, STHL)

C 9	High level input	$\mathrm{V}_{\mathrm{IH} 2}$		$0.8 \times \mathrm{DV}_{\mathrm{DD}}$		$\mathrm{DV}_{\mathrm{DD}}$	V
C 10	Low level input	$\mathrm{V}_{\mathrm{IL} 2}$		0		$0.2 \times \mathrm{DV}_{\mathrm{DD}}$	V
C 11	High level output	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{o}}=-1.0 \mathrm{~mA}$	$\mathrm{DV}_{\mathrm{DD}}-0.5$			V
C 12	Low level output	$\mathrm{V}_{\mathrm{OL} 1}$	$\mathrm{I}_{0}=1.0 \mathrm{~mA}$			0.5	V
C 13	Input leak current	$\mathrm{I}_{\mathrm{L} 2}$		-2		2	$\mu \mathrm{~A}$

3) Pull down pins (TEST1, TEST2)

C 14	High level input	$\mathrm{V}_{\mathrm{IH} 3}$		$0.8 \times \mathrm{DV}_{\mathrm{DD}}$		$\mathrm{DV}_{\mathrm{DD}}$	V
C 15	Low level input	$\mathrm{V}_{\mathrm{IL} 3}$		0		$0.2 \times \mathrm{DV}_{\mathrm{DD}}$	V
C 16	Pull down resistances	R_{PD}		140	280	560	$\mathrm{k} \Omega$

- The above standards apply only to our standard package for the product.

Item	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

(3) Gamma adjustment resistances

C 17	Total resistance	$\mathrm{R} \gamma$	Between $\mathrm{V}_{\text {REF 0 }}$ and $\mathrm{V}_{\text {REF 10 }}$	25	40	55	$\mathrm{k} \Omega$
C 18	Switch resistance	$\mathrm{R} \gamma \mathrm{SW}$	Between $\mathrm{V}_{\text {REFR }}$ and $\mathrm{V}_{\text {REF 0 }}$, Between $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF 10 }}$	25	50	100	Ω

10) Conditions

$$
\begin{aligned}
& \mathrm{V}_{\text {REFR }}\left(\mathrm{V}_{\text {REFL }}\right)=3.400 \mathrm{~V}, \mathrm{~V}_{\text {REF } 0}\left(\mathrm{~V}_{\text {REF 10 }}\right)=3.395 \mathrm{~V} \\
& \text { And } \\
& \mathrm{V}_{\text {REFR }}\left(\mathrm{V}_{\text {REFL }}\right)=0.100 \mathrm{~V}, \mathrm{~V}_{\text {REF } 0}\left(\mathrm{~V}_{\text {REF 10 }}\right)=0.105 \mathrm{~V}
\end{aligned}
$$

- The above standards apply only to our standard package for the product.
$\mathrm{DV}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{BV}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{SS}}=\mathrm{DV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

	Item	Symbol	Conditions	Rating			Unit
				TYP	MAX		

(4) Analog output pins (YX1 to 136, YY1 to 136, YZ1 to 136)

C19	High level output current (gray scale output)	$\mathrm{I}_{\mathrm{OH} 1}$	$\begin{gathered} \mathrm{V}_{\mathrm{x}}=3.4 \mathrm{~V} \\ \mathrm{~V}_{\text {OuT }}=2.4 \mathrm{~V} \\ \text { Note } 11 \end{gathered}$			-0.05	mA
C20		$\mathrm{I}_{\text {OL1 }}$	$\begin{gathered} \mathrm{V}_{\mathrm{x}}=0.1 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=1.1 \mathrm{~V} \\ \text { Note } 11 \end{gathered}$	0.05			mA
C21	Average output voltage deviation	$\Delta \mathrm{V}_{\mathrm{O}}$	$2.7 \mathrm{~V} \leq \mathrm{V}$ x		± 20	± 25	mV
			$0.8 \mathrm{~V}<\mathrm{V} \mathrm{x}<2.7 \mathrm{~V}$		± 10	± 20	
			$\mathrm{V} \mathrm{x} \leq 0.8 \mathrm{~V}$		± 20	± 25	
C22	Output voltage range	V_{O}		$\mathrm{AV}_{\text {SS }}+0.1$		$\mathrm{AV}_{\mathrm{DD}}-0.1$	V
C23	High level output current (binary output)	$\mathrm{I}_{\mathrm{OH} 2}$	$\begin{gathered} \mathrm{V}_{\mathrm{x}}=3.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V} \\ \text { Note } 11 \end{gathered}$			-0.1	mA
C24	Low level output current (binary output)	$\mathrm{I}_{\text {OL2 }}$	$\begin{gathered} \mathrm{V}_{\mathrm{x}}=0.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V} \\ \text { Note } 11 \end{gathered}$	0.1			mA

(5) Through connection pins (COM1 to 4)

C25	Wiring resistance	$\mathrm{R}_{\mathrm{COM}}$			7		Ω

Note: For further details on through connection pin wiring resistance, refer to the reference data attached to the delivery specifications.
11) V_{X} is the output voltage for the analog output pin;
$\mathrm{V}_{\text {out }}$, the voltage applied to the pin.

- The above standards apply only to our standard package for the product.
(2) AC Characteristics

	Item	Symbol	Conditions	Rating			Unit
				MIN	TYP	MAX	
C26	FY period	t_{p}	Duty $=50 \%$	100			ns
C27	FY High level pulse width	$\mathrm{t}_{\mathrm{wcH}}$		45			ns
C28	FY Low level pulse width	t wcL		45			ns
C29	Data/INV setup time	$\mathrm{t}_{\text {st1 }}$		20			ns
C30	Data/INV hold time	$\mathrm{t}_{\text {hd1 }}$		20			ns
C31	Start pulse setup time	t st2		20			ns
C32	Start pulse hold time	t hd2		20			ns
C33	Start pulse Low level pulse width	$\mathrm{t}_{\mathrm{wsL}}$		2			FY period
C34	Carry output delay time	t d1	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			50	ns
C35	LD signal High level pulse width	wldH		2			FY period
C36	LD signal Low level pulse width	t wldL		2			FY period
C37	LD signal-start pulse setup time	$\mathrm{t}_{\text {st3 }}$		2			FY period
C38	LD-FY setup time	$\mathrm{t}_{\text {st } 4}$		20			ns
C39	LD-FY hold time	t hd4		20			ns
C40	MODE3 setup time	t st5	Note 12)	20			ns
C41	MODE3 hold time	t hd5	Note 12)	20			ns
C42	PS setup time	$\mathrm{t}_{\text {st6 }}$		20			ns
C43	PS hold time	$\mathrm{t}_{\text {hd6 }}$		20			ns
C44	Data input invalid interval	t ng1			1		FY period
C45	Final data timing	t ng2				1	FY period
C46	LCD drive signal delay 1	t d2	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \text { Note } 13 \text {) } \\ \hline \end{gathered}$			20	$\mu \mathrm{s}$
C47	LCD drive signal delay 2	$\mathrm{t}_{\mathrm{d} 3}$	$\begin{array}{\|c\|} \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \text { Note } 13), \text { Note } 14) \\ \hline \end{array}$			30	$\mu \mathrm{s}$
C48	LCD drive signal stop time	t d4	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			5	$\mu \mathrm{s}$
C49	RSW setup time	t st7				280	$\mu \mathrm{s}$

12) The reference point is the first FY rising edge after the rising edge in the start signal (STHR or STHL).
13) This time is defined as that taken for the driver output voltage to reach, within 6-bit precision, the target voltage.
14) The target output voltage shall be the output voltage just before the power save function takes effect--that is, the latter shall be assumed to have reached the target.

- The above standards apply only to our standard package for the product.

AC Characteristics Timing Chart 1

AC Characteristics Timing Chart 2

Note
In the absence of any indication to the contrary, the following levels are assumed.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{OH}}=0.8 \times \mathrm{DV}_{\mathrm{DD}} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{OL}}=0.2 \times \mathrm{DV}_{\mathrm{DD}}
\end{aligned}
$$

(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
(3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
(6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
(7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
C. These materials are solely intended for a customer's individual use.

Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.

